G.A. JONES, P. BONNETT and S.F.H. PARKER An electron microscope study of the amorphous magnetic material 2605 CO $(Fe_{67}Co_{18}B_{14}Si_1)$	3691	D.R. SAINI, V.M. NADKARNI, P.D. GROVER and K.D.P. NIGAM Dynamic mechanical, electrical and magnetic properties of ferrite filled styrene-isoprene-styrene	3710
TQ. LIU, O. SAKURAI, N. MIZUTANI and M. KATO Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques	3698	Y. SADAOKA and Y. SAKAI A humidity sensor using burned zircon with phosphoric acid: effect of strongly acidic protons on humidity sensitivity	3717
PL. HSU, SS. YAU and TW. CHOU Stress-corrosion cracking and its propagation in aligned short-fibre composites		Interfacial effects in the flow-bead test for vitreous enamels	3724
	3703	P. RICHMOND The physical properties of extruded food foams	3729

Corrigendum

B.L. KARIHALOO and K. VISWANATHAN, J. Mater. Sci. 20 (1985) 4103.

Author's note:

A recent valuable exchange of notes on a related paper with Professor B.A. Bilby has exposed certain errors in the above paper. The errors arise from the delta-function behaviour of the derivatives of eigenstress $\sigma_{ij,i}^*$ on the boundary $\partial\Omega$ of the elliptical region Ω which we had overlooked in Equation 2 and from the omission of a factor in the boundary condition Equation 4. The following alterations to the paper will correct these errors:

1. Add

$$\int_{\partial\Omega} \sigma_{ij}^*(\mathbf{x}') G_{im}(\mathbf{x}, \mathbf{x}') n_j(\mathbf{x}') \, \mathrm{d}S(\mathbf{x}'),$$

where dS is an element of $\partial \Omega$, to the right hand side of Equation 2.

2. Replace the integral in Equation 20 by

$$\oint_{\Gamma} \sigma_{ij}^{*\mathrm{II}}(\mathbf{x}') G_{im,j}(\mathbf{x}, \mathbf{x}') \ \mathrm{d}\Omega(\mathbf{x}');$$

3. Replace the first integral in Equation 24 by

$$\boldsymbol{\xi}^{m} = -\int_{\Omega} \sigma_{ij} [\boldsymbol{G}(\boldsymbol{x}', \, \boldsymbol{x}'')] \boldsymbol{G}_{im,j}(\boldsymbol{x}, \, \boldsymbol{x}') \, \mathrm{d}\Omega(\boldsymbol{x}'');$$

(note ξ in Equations 23 and 24 should be ξ^m).

4. Replace the right hand side of Equation 19 and of Equation 32 by

$$\sigma_{ij}^{10}(\boldsymbol{x}) n_j(\boldsymbol{x}) + \sum_{\alpha,\beta} C_{\alpha\beta}^{ij} x_1^{\alpha} x_2^{\beta}$$

where $\hat{\sigma}_{ii}^{0}(\mathbf{x})$ and $\hat{C}_{\alpha\beta}^{ij}$ are obtained from Equations 17 (and 10) and 21 by replacing λ , μ with λ_1 , μ_1 , respectively.

5. As a consequence of correction (4), replace σ_{ij}^0 and $C_{\alpha\beta}^{ij}$ in Equation 41 by $\frac{1}{\sigma_{ij}^0} C_{\alpha\beta}^{1j}$ respectively and $A_{\alpha\beta}^{ij}$ and $C_{\alpha\beta}^{ij}$ in Equations 42 to 44 by $A_{\alpha\beta}^{ij}$ and $C_{\alpha\beta}^{ij}$, respectively. Also, the vertical scale of Figs 2 to 9, inclusive should be altered by multiplying by λ/λ_1 .